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This paper describes a numerical method developed to solve the interhemispheric flow of 
thermal plasma, heat and momentum along closed magnetic field tubes in the plasmasphere. 
The essence of our technique incorporates the best aspects of two former approaches into a 
single unified code. The first is the so-called shooting or searching method, which employs 
integro-differential equations, and the second involves the solution of second order nonlinear 
partial differential equations by conventional iterative techniques. The former method attains 
optimal performance above -2000 km, and the latter below this altitude. The combined 
approach yields a satisfactory solution over an entire geomagnetic flux tube, encompassing 
two low altitude regimes, in the northern and southern ionospheres, and a high altitude regime 
spanning the distance between them. We demonstrate that the solution is stable and simulate 
the collapse of the postsunset ionosphere. 

INTRODUCTION 

In this paper we present the numerical solution of a system of equations which 
describes the coupling of heat flow, momentum transfer and plasma densities between 
the ionosphere and magnetosphere. Despite significant advances over the last decade, 
which have been described in a number of recent reviews [l-4], the coupling 
mechanisms have not been studied using a realistic formulation which simultaneously 
acounts for variations in all the major controlling variables. 

A major shortcoming in previous studies has been the use of ad hoc boundary 
conditions, which generally arise when only part of a field line is modeled. We 
surmount this limitation in our treatment by simulating the flow and density in an 
entire flux tube spanning the midlatitude plasmasphere between magnetically 
conjugate points in the F regions of the northern and southern ionospheres, as shown 
in Fig. 1. The solution encompasses several regions of differing dominant physical 
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FIG. 1. Regions and boundaries. A, A*: Regions of local chemistry. B. B*: Ion diffusion regions 
where parabolic density equations can ‘be formulated. C: Dynamic equilibrium region. 1, l*, 2, 2”: 
Boundaries between adjacent regions at 1 and I*. Densities are continuous while at 2 and 2* both 
density and flux are continuous. 

processes, which in turn require different formulations and numerical treatment. We 
use an optimal mathematical approach for each altitude regime, and derive the 
appropriate and unique boundary conditions which link these regions. 

In the section immediately following we present the formulation of the plasma 
equations which describe the densities and flow of 0 +, Ht ions and electrons along a 
midlatitude field line. In the next section we briefly review relevant work, and point 
out the advances and limitations of simulations performed to date of geophysical 
plasma densities and flows in the plasmasphere. The third section describes the 
approximations which we make to adapt our basic equations to each altitude regime 
and how we formulate the boundary relations between regions so that they are 
physically and mathematically consistent. The fourth section details the numerical 
procedure we use to find a unique solution to the system of differential equations and 
boundary conditions. We present typical results in the fifth section and show that our 
solution is stable. 

BASIC EQUATIONS 

The specification of magnetic flux tube coordinates in a realistic model of the 
Earth’s field, as shown in Fig. 1, and the computation of local atmospheric 
parameters from a semi-empirical model [5, 61 ensure that the plasma physics 
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simulation will give geophysically consistent results. Schunk [7] has presented a 
general system of transport equations for the Earth’s upper atmosphere and 
ionosphere. This system of equations contains a continuity, momentum, internal 
energy, stress tensor and heat flow equation for each species in the gas mixture. 
Application of this system to the midlatitude ionosphere and plasmasphere permits 
several simplifying assumptions to be made which significantly reduces the 
complexity of the equations. 

We consider a plasma comprised of only two major ions, O+ and H’, and 
electrons in a neutral atmosphere of 0, O,, N, and H. We assume that species 
temperature and flow velocity differences are small, a midlatitude condition. Thus we 
can neglect stress and nonlinear acceleration terms, and use Burgers’ [S] linear 
collision terms (cf. St. Maurice and Schunk IS]). In addition, density and temperature 
gradients perpendicular to the geomagnetic field lines are neglected. To arrive at the 
above formulation we use the equations derived by St. Maurice and Schunk [9 1, but 
we also include terms that take account of collisions with neutrals. 

With the above assumptions we derive the following set of matrix equations for 
continuity and momentum: 

(1) 

where the diffusive force is 

‘CNi ri> mi gll 
Qi=------ 

T, VW, Ted 
kT, +zi- 

NiT, l Ti Ne Te 
(2b) 

and the ordinary (Di) and thermal (a,, a$, yi) diffusion coefficients are, as given in 
St. Maurice and Schunk [9 ], 

(2d) yi= f 15 I(NJ’Ni) Vei - Zi(Vei + Ve,j)I 
13(Vpi + Vei) + 8vp, ’ 

15 N, pij T, pij(v; - vji) 
aij=--p- 8 Nj Mi Tij (v;v,$ - v$$) ’ 
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as is the correction term dij: 

The upper sign and I’ = 1 apply to O+, while the lower sign and i = 2 apply to H + in 
these equations. The symbol i = x applies to ambient neutrals. Ni, #i, Zi, Mi and 7’i 
are the number density, flux, charge, mass and temperature of the ith species. g,, is 
the parallel component of gravity, pij is the reduced mass of species i and j, and T, = 
(Mj Ti t Mi Tj)/(Mi + Mj) is the average temperature of the two species. The collision 
frequencies, Vii, and effective collision frequencies, vi and vij, are also taken from 
St. Maurice and Schunk [9]. Also the symbol i represents a matrix of reaction 
frequencies determined from the various neutral densities and ion-neutral binary rate 
constants. 

The accurate calculation of a number of locally determined parameters on the 
basis of realistic geophysical models is required as a prerequisite to the realistic 
simulation of plasma transport. The Earth’s rotating tilted dipole, and gravitational 
field, are calculated locally and neutral atmospheric parameters may be taken from a 
semi-empirical model. We selected the MSIS model atmosphere by Hedin et al. [ 5, 6 ] 
because it reproduces the seasonal solar cyclic and diurnal variations of the 
atmosphere as well as its response to geomagnetic disturbances. The attenuated solar 
flux and photoionization rate are then calculated locally. 

PREVIOUS STUDIES 

In this study we restrict our treatment to the plasmasphere, which is a region of 
closed field lines. Therefore, we need not concern ourselves with supersonic flows 
[ 10-121, as they occur primarily outside the plasmasphere. 

The modern hydrodynamic or diffusive equilibrium approach to the upper regions 
of trapped plasma tubes was formulated in 1967 by Walker [ 131, who pointed out the 
important role of thermal diffusion in the ionosphere, and in 1969, Schunk and 
Walker [14] reformulated the general coupled equations of diffusive equilibrium to 
include any number of major ions, of any charge, as well as thermal diffusion. When 
collisional terms are included, the diffusive equilibrium equations of Schunk and 
Walker [ 141 become the coupled ion momentum equations of Schunk [ 7 ]. With the 
continuity equations, these form the basic tools for treating both the high and low 
regions. 

As mentioned above, previous investigations have dealt mainly with limited 
portions of magnetospheric flux tubes. At F region altitudes, for instance. it is clear 
that ion-ion and ion-neutral collisions are both important. The ion fluxes can be 
calculated accurately from the ion momentum equations (2a) at these altitudes and 
then substituted into the continuity equations (1) to form coupled parabolic equations 
in 0’ and H+. In earlier work, Schunk and Walker [ 151 and Ruster \ 16) formulated 
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parabolic diffusion equations for O+. In other works by Schunk and Walker ] 17 1, 
Roble [ 181 and Stubbe [ 191 coupled parabolic equations were formulated for 0:) 
NO+, Ot and Ht for the F region and topside ionosphere, but HC was treated as a 
minor ion in each of these cases, or the Hf density was calculated by assuming 
chemital equilibrium with O+. Such formulations all apply to altitudes below about 
2000 km, and require artificially designated or measured upper boundary conditions. 

Some early attempts were made to extend this treatment for Ot and Hf along the 
entire flux tube [20, 211, but this leads to serious numerical problems, which are 
discussed in the next section. We show in the next section that a satisfactory solution 
to the entire field tube problem can be achieved by linking appropriate low- and high- 
altitude formulations with continuity conditions on flux and density at about 
1500 km. 

The searching method has also been used in attempts to treat the entire flux tube 
by a single method. In the searching method [22-261 the flux or velocity from the 
continuity equation is substituted into the collision terms of the momentum equation. 
The resulting integrodifferential equation is then integrated numerically down from 
the equator, where flux and density boundary conditions are imposed. The equatorial 
boundary conditions are readjusted and the integration performed repeatedly until 
low-altitude chemical boundary conditions are satisfied. The main disadvantages of 
this approach stem from the fact that flux determinations from the continuity 
equation are inherently inaccurate and unstable at low altitudes, and that the method 
does not produce simultaneous solutions in both hemispheres. Therefore, convergence 
may be up to an order of magnitude slower than that discussed in this paper. 

In spite of the basic difficulties with the shooting method, considerable progress 
has been made in geophysical modeling. Bailey et al. [25] have shown that H ‘-0 + 
counterstreaming can occur with [O’] flowing upwards above 500 km during a 
diurnal simulation. Additional calculations by Bailey et al. [27] have shown that an 
L = 3 flux tube will probably never be able to replenish itself between magnetic 
storms. Their method has some slight variations from a purely shooting solution, in 
that the 0’ density was computed using a parabolic diffusion equation below 
1500 km and by diffusive equilibrium above. The H+ simulation, however, was 
achieved using the shooting method. Recent shooting method results by Moffett and 
Murphy [ 22 ] included energy, continuity and momentum equations, and were used to 
study, among other things, a collapsing postsunset ionosphere. 

The perturbation solution of Mayr et al. [28] also treats the entire field line as a 
single region. Mayr et al. integrate numerically but with only a gradually increasing 
fraction of the collisional terms in the momentum equations, along the entire field 
line. The drag terms are always evaluated in the nth approximation to obtain the 
n + 1st approximation. This method also suffers from low-altitude problems for the 
same reasons mentioned in connection with searching methods. It is apparent that 
both of these methods are basically high-altitude formulations and that neither should 
be used unless an accurate lower boundary at, say, 1000 km can be supplied by some 
other type of calculation or by measurement. 

Multiple-region formulations somewhat similar to our own have been used by Park 
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and Banks [29] and Marubashi and Grebowski [30], who treated the topside region 
above 3000 km as a reservoir. The former did not treat diffusion of O+ between 500 
and 3000 km 1291, however, and the latter ignored significant terms in the diffusive 
equilibrium formulation at high altitudes [30]. 

REGIONS AND BOUNDARIES 

We have split each plasma flux tube into three regions, B, C, and B*, as shown in 
Fig. 1. The best approximation to use in each region, and the boundary altitude 
between them, will depend upon both ion and neutral densities. The continuity and 
momentum equations may be formulated either as parabolic partial differential 
equations or as integrodifferential equations, i.e., the shooting method. These two 
methods use different techniques to obtain the ion flux. In the shooting method the 
ion flux is obtained from the continuity equation, and in the parabolic case from the 
momentum equations. Although these two procedures are mathematically equivalent, 
their numerical accuracy varies as a function of altitude. 

When the shooting method is used at low altitudes, the ion flux is only the small 
difference of the much larger integrated photochemical terms. A small error in ion 
densities causes a large error in the chemical reaction frequencies 

and a much larger error in the flux gradient and the flux. 
When the flux is determined from the momentum equations, as in the parabolic 

equation method, the accuracy suffers when the diffusive force, Qi of Eq. (2a), tends 
to zero. This occurs at great altitudes where the diffusive force and diffusion coef- 
ficient, Di of Eq. (2a), become very small and very large, respectively, although the 
ion fluxes remain finite. The individual terms of Qi do not become small at high 
altitudes. Therefore, Qi becomes the small algebraic sum of several relatively larger 
terms. The fractional error of Qj becomes large at high altitudes and so does the frac- 
tional error of ion flux, which is a linear combination of Qi terms when calculated 
from the momentum equations. Since one of the major terms of each Qi is VNi/Ni it 
is clear that the flux calculation by this method will be hypersensitive at high 
altitudes to small errors in the densities. 

For a given step size the shooting method wil perform more accurately at high 
altitude but the parabolic diffusion equations are a better choice for low altitude. 
Fortunately, there is a considerable overlap from about 500 to 2500 km, where either 
formulation will perform adequately. We therefore choose a boundary altitude, 
dictated by atmospheric conditions, somewhere within the limits of the overlap 
region, and use parabolic differential equations below and a modified form of the 
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chooson, and use parabolic differential equations below and a modified form of the 
searching method above. The transport time for H+ is less than 1 hr [30] at the 
boundary height we have chosen, while the chemical lifetime is about lo4 sec. With 
increasing altitude the chemical lifetime tends to become still longer, while the 
diffusive lifetime becomes shorter. The locations of the interregional boundaries in 
each hemisphere are indicated by 2 and 2” in Fig. 1. 

The actual procedure by which the boundary altitude was chosen was 
experimental. We gradually increased the boundary altitude, noting the decreasing 
response of the high-altitude portion of the density curves above 1000 km or so. At 
greater boundary altitudes, 3000 km or greater, the convergence of the low-altitude 
portion became slower and somewhat unstable. We chose 2000 km as the best 
compromise for stability, accuracy and speed of convergence. 

In our high-altitude region, C, the relative flow terms become insignificant for H+ 
and Ot in the plasmasphere, and the diffusive equilibrium approximation is used. 
Since the diffusion coefficients Di of Eqs. (2) become very large in this region while 
the actual fluxes are known to remain finite, the diffusive force terms, Qi, must be 
very small as discussed above. The equations of diffusive equilibrium are given in our 
formulation by 

Qi = 0. (3) 

We integrate these first order coupled equations numerically from boundary 2 
through region C to 2”. This procedure is similar to that of the searching method 
except that we start at the lower boundary rather than the equator, and we completely 
ignore the relative flow terms. At a later date we intend to include these terms so that 
the formulation will correspond to the integrodifferential equations of Bailey et al. 

[25 1. 
We have adopted the equations of “diffusive equilibrium” although we have done 

so on the basis of somewhat nonstandard assumptions. Usually all fluxes and time 
derivatives are assumed at the outset to be zero so that all acceleration and relative 
flow terms of the momentum equations can be omitted. By contrast we have used the 
equally sufficient assumptions of subsonic flow velocities, reasonable for the entire 
plasmasphere, and very low densities applicable to region C, in order to ignore 
exactly the same terms. The density profiles calculated in C have the shape of 
diffusive equilibrium profiles at any instant, but they match the time variable 
densities at boundary 2. Therefore non-zero fluxes are required to inflate of deflate 
these variable profiles. 

The full equations of continuity are also valid in region C. Therefore we have a 
total of four first order differential equations in the four independent variables N,, 
N,, #1 and & in region C, where N,, N, are the densities, and dI, & the 
corresponding fluxes. 

In regions B ans B*, all collisions are important, so the full momentum equations 
(2a) provide an accurate computation of flux. When these equations are substituted 
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into Eqs. (l), the equations of continuity, we obtain two coupled parabolic density 
equations. 

(4) 

where second order terms will originate in the spatial derivatives involved in Q, and 

Q,. 
In regions A and A”, which include points 1 and l*, respectively, the diffusive 

lifetime greatly exceeds the chemical lifetime; hence, we are justified in dropping the 
flux divergence terms from the continuity equations which then become local 
photochemical equations. 

These equations require an initial condition, but no additional boundary condition or 
specified parameter, for the regions A and A* to which they apply. 

Such is not the case in the adjacent B and B* regions. The parabolic equations of 
each region require the specification of two independent parameters per variable such 
as boundary densities or density gradients, per region, in order to determine a unique 
mathematical solution. Similarly the four first order equations of region C require the 
specification of one independent parameter for each of the four variables N, , Nz. 4, 
and &, to determine a unique mathematical solution in that region. 

Any physically reasonable solution must be continuous in flux (4, and #?) and 
density (N, and N,) at the boundaries 2 and 2 *. The flux in region C just above the 
boundary can of course by expressed in terms of density gradients just below the 
boundary by means of the momentum equation (2a), since flux is not an independent 
variable in regions B and B*. The continuity conditions at boundary 2 provide four 
independent relations between the four free parameters of region B and the four free 
parameters of region C. The continuity conditions at 2* provide similar relations 
between the parameters of regions C and B*. 

At boundaries 1 and l* we may specify the density by the local photochemical 
equations as previously elucidated. This provides the remaining two independent 
parameters for regions B and B*. In summary we have used 12 independent 
continuity relations to reduce three independent solutions with four free parameters 
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each to a single unique solution which spans all three regions B and B* and is 
continuous in flux and density at all points. 

When the momentum equations, which are ordinary first order equations, are 
integrated from boundary 2, it is clear that densities at all points of C, including 2”. 
are determined by the densities at point 2 alone. This may be expressed in functional 
form as: 

N,(S) = Gi(N1(2), N,(2), S>* (6) 

In the computer code this function is obtained by numerical integration of Eqs. (3), 
whose terms are defined in Eq. (2b). When the function is substituted into Eqs. (1) 
and they are in turn integrated we obtain an equation that shows the relationship of 
the fluxes to the inflation of the entire region C. 

The l/B(S) factors all arise from the divergences along the nonuniform flux tube 
whose area varies as l/B(S). It is to be noted that if #,.(2), #i(2*) and N,(2) have 
some specific values then a/V,(2)/&, which controls the last term in the integral of 
Eq. (7) via dynamic equilibrium, must have a particular unique value to be consistent 
with Eq. (6). 

NUMERICAL ANALYSIS 

Equations (2a), (4) and (7) form the basis of our finite difference formulation when 
the following substitution is made for any spatial derivative: 

a? = 0, Lf(sk+ 1) f/+ 1) - J-P,, ti+ I>1 +(1 -41 if@ kt 1, l,) - f@k, t,)l - 
as k+1/2 S k+l - sk s k+l -s, ’ 

(8) 

where k indexes arc length, 1 indexes time, and 0, is a variable parameter input that 
determines the implicit fraction during execution. The values 0,= 0, 5, 1 are input for 
explicit, Crank-Nicholson, and Laesonen differencing, respectively. In this section of 
the paper Eqs. (7), (4) and (2a) will refer to the finite difference version with Eq. (8) 
substituted for spatial derivatives in each case. The nonlinear algebraic equations 
which are obtained are solved by the Newton-Raphson method. 

We have actually integrated the continuity equation in regions B and B*, as well as 
C, before using the finite difference approximation. Thus Eq. (4) becomes the 
following function for the iteration: 
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‘=Jy:][‘d] -qy -c[yI z$ 
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( 

i.e., a solution is obtained when F z 0. 
Therefore, our finite difference procedure might aptly be called a “flux preserving 

finite difference code.” The form of Eq. (9) now strongly resembles that of (7); the 
primary difference is the much longer spatial interval in Eq. (7) and the use of 
dynamic equilibrium to obtain the densities within the interval. We will see that this 
similarity lends itself well to the unified iterative approximation to the solution in all 
three regions. 

Figure 2 is a schematic of how our spatial grid points are related to the boundaries 
of our low- and high-altitude formulations. The first and last points of our spatial grid 
are located at the lower boundaries 1 and l*, respectively, while the interregional 
boundaries 2 and 2* each exactly bisect the arc length between a pair of points. Thus 
the points 2A and 2B are located just above and just below boundary 2, and the 

‘ION (41 

C 0 \ 
\ 

\ \ 
\ 

\ 
2A,‘--------3 EQUATION (7) 

2 _.--- 

I 
‘. 

*---;;> EQUATION (4) 
/’ 

, _ I’ 

FIG. 2. Schematic of spatial grid. It is to be noticed that boundaries 2 and 2* arc each straddled by 
the pairs of points (2A, 2B) and (ZA”, 2B*), respectively, from which the boundary fluxes are 
calculated. Boundaries 1 and I*, on the other hand, fall exactly upon the first and last point. The 
densities at these points are calculated via local photochemical equilibrium. Both densities at each of 
three points are needed to calculate each finite difference equation used in the Newton-Raphson iterative 
solution. The three points are adjacent for Eq. (4) but not for Eq. (7). The three points needed to 
calculate Eq. (7) are ZB, 2A and 2B*. 
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points 2A* and 2B* are located just above and just below boundary 2*, respectively. 
All the densities of region C, including 2A* are determined via dynamic equilibrium 
from the densities at the single point 2A. The densities at the four points 2A, 2B, 2A* 
and 2B*, substituted in Eq. (2a), are sufficient for determining both boundary fluxes 
in Eq. (7). Integral terms in (7), based on dynamic equilibrium profiles, are also 
keyed to the densities at 2A, so actually three points suffice for Eq. (7). 

The densities at three sequential points inside B or B*, as shown in Fig. 2, suffice 
to determine the parabolic equations (4). Also shown are the three non-sequential 
points, 2B, 2A and 2B*, whose densities suffice to determine Eq. (7), as explained 
above, and the non-sequential triple 2A, 2B* and 2B* t 1, which serves to determine 
the type (4) equation spanning boundary 2*. 

The Jacobian matrix for our Newton-Raphson iteration is computed numerically 
by taking small variations of the densities involved in each of the equations. It is to 
be noted that only the point 2A of region C receives an independent density variation 
while the densities of the rest are regenerated by dynamic equilibrium. Therefore only 
the densities at that one point, 2A, of the region C appear in the array, between the 
points of regions B and B*. Two equations of type (7) appear in the equation array, 
and form just a double row for O+ and Ht at that point, in the Jacobian matrix. 

After convergence of the iterative solution, the equations of dynamic equilibrium 
are used one more time to compute the density profiles for the rest of region C. They 
key element in the iterative scheme is Eq. (7). Although its integral terms are based 
on the first order equations of dynamic equilibrium, they respond to variations in the 
density in the same way as the corresponding terms of the parabolic equations.The 
differences of the two boundary fluxes also respond in the same way to variations in 
density, as do the analogous flux gradient terms of the parabolic equations. 

RESULTS 

We first discuss the tests we performed to demonstrate that the simulation 
converges to a stable steady state solution. We then analyze the steady state ion 
fluxes, and finally we present simulations of the collapse of the sunset ionosphere. 

For this stability test, the rotation of the earth and the time evolution of all locally 
computed parameters were frozen at UT 17:33 Aug. 10, and furthermore set 
artificially to N-S symmetry about the magnetic equator of an L = 2 field line at 
approximately 70 W longitude. Our temperature model for this test featured 
‘I; = 4500 K, T, = 5500 K at the magnetic equator and Ti = T, = 500 K at 120 km. 
To obtain a steady state solution the time derivative terms of Eqs. (4) and (7) were 
set equal to zero and the simulation allowed to iterate to convergence. 

Using the steady state solution as an initial condition we then allowed the 
simulation to run in the time dependent mode, but with all the local ambient 
parameters still frozen at UT 17:33. Using many 5-min time steps we found that the 
time dependent density profile simulation did not drift and displayed an oscillation of 
less than one part in l,OOO,OOO about the steady state solution. The profiles also 
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proved to be symmetric to better than one part in l,OOO,OOO. We feel that the results 
of these tests constitutee a rigorous test of stability and conservation of particles. 

The steady state profiles show some interesting aspects of ion production and flow 
which indicate that the code is reproducing expected geophysical variations. The 
steady state flux profiles, denoted Oh in Fig. 3, show downflow of both O+ and Ht 
below 500 km but counterstreaming above with 0’ moving upwards and H ’ 
downwards. The peak 0’ downflux occurs very strongly near the altitude of the 0’ 
density peak, about 250 km as shown in Fig. 4. This can be attributed to the fact that 
the chemical loss rate, due to reaction of O+ with N, and O,, increases with 
decreasing altitude more rapidly than the photoionization production rate as one 
approaches the O+ density peak from above. The net result is that the 0 + ions are 
actually flowing into their region of most rapid production. 

Above about 500 km, the calculated 0 ’ flux is upward, as is typically seen in 
daytime measurements [ 3 11, and the Ht is counterstreaming downward. At altitudes 
above 550 km, the counterstreaming Ht and Ot flux are virtually equal in 

1000 
900 

800 - 

700 

1207 I I I I I i 
-5x108 o 1x108 
ION FLUX km-*si) 

FIG. 3. Simulated ion fluxes. Both H+ and O+ fluxes are shown, 0 hr denoting steady state 
conditions, and 10 hr the ion fluxes 10 hr after a simulated ionospheric collapse. For steady state 
conditions, denoted 0 hr in the figure, the Hi flux is downward everywhere while the 0 ’ flux is divided 
into a downward regime below 500 km and an upward regime above. It is apparent that above about 
600 km, where 0’ + H ++ Hi + 0 are the only chemical reactions, the two fluxes are virtually equal 
and opposite. Another striking feature, compared with Fig. 4 is that the maximum 0’ flux occurs right 
at the maximum in the O+ density profile. Ten hours after collapse, denoted 10 hr. both fluxes are 
everywhere downward. The O+ downflux is higher than previously at high altitudes. but lower below 
350 km because of a decrease in ion density. 
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FIG. 4. Simulated ion densities. For H’, curves for steady state conditions and 10 hr after the 
collapse, denoted 0 hr and 10 hr respectively, are shown. For 0’ the curves denoted 0 hr, 1 hr, 3 hr and 
10 hr denote steady state and then I, 3, and 10 hr after the simulated ionospheric collapse. 

magnitude except for a small residual difference caused by the small amount of 
photoproduction even at very high altitudes. 

Photoproduction and electron recombination are very slight above 550 km. Under 
steady state conditions aNi/& = 0 as well, so with symmetric conditions, 
h,+(s) + #o+(s) = 0 b y conservation of charge. Quite simply, counterstreaming is 
required by the continuity equations, the particular direction of the counterstreaming 
being determined by the relative densities of neutral H and neutral 0 at higher and 
lower altitudes. The counterstreaming also produces a slight inflection in the Hf 
steady state curve at about 500 km, where the slope of the H+ density profile 
increases suddenly. This we attribute to the upflow of the major ion, O+, just above 
the 500 km level and downflow just below, which tends to force the H+ along with it. 

We have also simulated an ionospheric collapse, as might occur at sunset. For this 
purpose we allowed the electron heating rate and the photoproduction rate to decay 
exponentially at each point, with a time constant of 20 min. The results are shown in 
Fig. 4 as curves annotated with the time after the initiation of collapse. Times of 0, 1, 
3, and 10 hr are shown for O+, while only 0 and 10 hr are shown, for clarity of 
display, in the case of H+. 

The collapse of the topside O+ density appears to be the most profound sunset 
effect, while the topside H+ density profile only appears to settle slightly. Both 
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effects, however, are due to the same cause: the reduction of the topside ion and 
electron temperatures. In our temperature model, the equatorial temperatures are both 
reduced to about 1100 K after 10 hr from initial values of Ti = 4500 K and 
T, = 5500 K used for the steady state. The concomitant reduction in topside scale 
heights causes the O+ density, which had a shorter scale height to begin with, to 
decrease more rapidly. 

it will be noticed that the reduction of densities is moderate at middle altitudes and 
then again very pronounced near the lower boundary of our simulation. Temperature 
effects have less influence here. The more dramatic decrease at the lower altitudes is 
to be expected, however, because the chemical destruction rate is much greater at the 
lower altitudes than at the middle altitudes. 

The counterstreaming reported for steady state conditions disappears, to be 
replaced within about 1 hr by downstreaming of both ions everywhere. Even after 
10 hr however, there remains a residual pattern that looks as if the steady state coun- 
terstreaming were superimposed upon a net downflux. It would appear that the 
profiles are still in the process of adjusting to the reduced temperatures. The reduced 
photoproduction can no longer support an upflux of O+ at high altitudes in any case. 

The H ‘-0’ transition height is also lowered at night. Where it was 1150 km 
under daytime steady state conditions it has dropped to only 650 km after 10 hr. The 
lower transition height is a combined effect resulting from the reduction of both the 
neutral and ion scale heights under the lower-temperature postcollapse conditions. 
Note that the Hi density actually increases at around 800 km. The basic features 
agree with Evans and Holt’s geophysical observations 13 11 and demonstrate clearly 
that the code is working properly. 

FUTURE IMPROVEMENTS IN THE SIMULATION 

Our simulated density profiles show that our approximation of dynamic 
equilibrium is satisfactory for H’ and O+ above the altitude where Hf becomes the 
only major ion. Nevertheless there is an almost imperceptible discontinuity in the 
density gradients at boundaries 2 and 2*, so we intend to include ion-ion collisions 
at the very high altitudes at a later date. Two possible ways to do this present them- 
selves. One is to formulate O+ density as a parbolic equation at all altitudes (regions 
B, C and B*), but retain first order momentum and continuity equations for Hi at 
high altitudes (region C). Another way is to upgrade the dynamic equilibrium 
solutions iteratively by calculating each Vi from the continuity equation integrated 
between boundary 2 and 2*, and then to substitute it into the momentum equation 

Qi=-$[ (Vi- c)++ . I I, 1 
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The velocity Vi in Eq. (10) would be calculated from the previous iteration. Note that 
Qi will now be equal to some small correction number, rather than identically equal 
to zero, as in Eq. (3). 

The code will be used to study a number of geophysical problems including diurnal 
variations under a number of geophysical conditions, effects of interhemispheric 
flows, magnetospheric substorms and seasonal and solar cyclic variations upon 
profiles flux tube content and tilling processes. Future simulations will be compared 
extensively with satellite and ground-based measurements. The electron and ion 
energy equations will be simulated simultaneously as well. Future runs should 
therefore shed considerable light upon diurnal variations, plasmaspheric heat sources, 
ion fluxes and the maintenance of the nighttime ionosphere. 

CONCLUSIONS 

We have achieved the most comprehensive simulation to date of field-aligned 
plasma transport in the plasmasphere. The plasma simulation itself incorporates the 
best aspects of two older methods in a unified mathematical model and uses accurate 
geophysical parameters to produce an accurate and meaningful solution to the 
geophysical plasma problem. 

We have shown that we can link the solutions for an entire flux tube connecting 
the ionosphere and protonosphere even though it passes through several regions that 
require different sets of differential equations to approximate conditions in different 
regimes. We have derived the continuity relations across the boundary regions 
between different approximations which are necessary for this type of approach and 
replace artificially specified boundary conditions used in previous work. We have 
shown that a high-altitude counterstreaming of Ht and O+ must and does result 
under steady state conditions. 
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